The paper “Attention Is All You Need” (2017) introduced the Transformer — a novel neural architecture relying solely on self-attention, removing recurrence and convolutions. It revolutionized machine translation by dramatically improving training speed and translation quality (e.g., achieving 28.4 BLEU on English-German tasks), setting new state-of-the-art benchmarks. Its modular, parallelizable design opened the door to large-scale pretraining and fine-tuning, ultimately laying the foundation for modern large language models like BERT and GPT. This paper reshaped the landscape of NLP and deep learning, making attention-based models the dominant paradigm across many tasks.