Stanford’s 10-week CS231n dives from first principles to state-of-the-art vision research, starting with image-classification basics, loss functions and optimization, then building from fully-connected nets to modern CNNs, residual and vision-transformer architectures. Lectures span training tricks, regularization, visualization, transfer learning, detection, segmentation, video, 3-D and generative models. Three hands-on PyTorch assignments guide students from k-NN/SVM through deep CNNs and network visualization, and a capstone project lets teams train large-scale models on a vision task of their choice, graduating with the skills to design, debug and deploy real-world deep-learning pipelines.