This tutorial offers a detailed, line-by-line PyTorch implementation of the Transformer model introduced in "Attention Is All You Need." It elucidates the model's architecture—comprising encoder-decoder structures with multi-head self-attention and feed-forward layers—enhancing understanding through annotated code and explanations. This resource serves as both an educational tool and a practical guide for implementing and comprehending Transformer-based models.
The Transformer has been on a lot of people’s minds over the five years. This post presents an annotated version of the paper in the form of a line-by-line implementation. It reorders and deletes some sections from the original paper and adds comments throughout. This document itself is a working notebook, and should be a completely usable implementation. Code is available here.